1,921 research outputs found

    Random dispersion approximation for the Hubbard model

    Full text link
    We use the Random Dispersion Approximation (RDA) to study the Mott-Hubbard transition in the Hubbard model at half band filling. The RDA becomes exact for the Hubbard model in infinite dimensions. We implement the RDA on finite chains and employ the Lanczos exact diagonalization method in real space to calculate the ground-state energy, the average double occupancy, the charge gap, the momentum distribution, and the quasi-particle weight. We find a satisfactory agreement with perturbative results in the weak- and strong-coupling limits. A straightforward extrapolation of the RDA data for L≤14L\leq 14 lattice results in a continuous Mott-Hubbard transition at Uc≈WU_{\rm c}\approx W. We discuss the significance of a possible signature of a coexistence region between insulating and metallic ground states in the RDA that would correspond to the scenario of a discontinuous Mott-Hubbard transition as found in numerical investigations of the Dynamical Mean-Field Theory for the Hubbard model.Comment: 10 pages, 11 figure

    Reconciliation or Racialization? Contemporary Discourses about Residential Schools in the Canadian Prairies

    Get PDF
    The residential school system is one of the darkest examples of Canada’s colonial policy. Education about the residential schools is believed to be the path to reconciliation; that is, the restoration of equality between Aboriginal and non-Aboriginal peoples in Canada. While the acquisition of the long-ignored history of residential schools has the potential to centre marginalized perspectives and narratives, knowledge acquisition alone is not necessarily a reconciliatory endeavour. The critical discourse analysis offered in this article reveals how dominant narratives about residential schools, cited by well-meaning educators, re-inscribe harmful colonial subjectivities about Aboriginal peoples. Through a post-structural lens and drawing from interviews conducted across one prairie province, I demonstrate how citing popular, contemporary discourses about residential schools continues to racialize Aboriginal peoples while positioning non-Aboriginal peoples as supportive and historically conscious. Readers are brought to think about how learning about residential schools for reconciliation might be approached as the disruption of subjectivities and the refusal to (re)pathologize Aboriginal peoples. Otherwise, efforts at reconciliation risk re-inscribing the racism that justified residential schools in their inception.

    Fourth-Order Perturbation Theory for the Half-Filled Hubbard Model in Infinite Dimensions

    Full text link
    We calculate the zero-temperature self-energy to fourth-order perturbation theory in the Hubbard interaction UU for the half-filled Hubbard model in infinite dimensions. For the Bethe lattice with bare bandwidth WW, we compare our perturbative results for the self-energy, the single-particle density of states, and the momentum distribution to those from approximate analytical and numerical studies of the model. Results for the density of states from perturbation theory at U/W=0.4U/W=0.4 agree very well with those from the Dynamical Mean-Field Theory treated with the Fixed-Energy Exact Diagonalization and with the Dynamical Density-Matrix Renormalization Group. In contrast, our results reveal the limited resolution of the Numerical Renormalization Group approach in treating the Hubbard bands. The momentum distributions from all approximate studies of the model are very similar in the regime where perturbation theory is applicable, U/W≤0.6U/W \le 0.6. Iterated Perturbation Theory overestimates the quasiparticle weight above such moderate interaction strengths.Comment: 19 pages, 17 figures, submitted to EPJ

    Strong-coupling approach to the Mott--Hubbard insulator on a Bethe lattice in Dynamical Mean-Field Theory

    Full text link
    We calculate the Hubbard bands for the half-filled Hubbard model on a Bethe lattice with infinite coordination number up to and including third order in the inverse Hubbard interaction. We employ the Kato--Takahashi perturbation theory to solve the self-consistency equation of the Dynamical Mean-Field Theory analytically for the single-impurity Anderson model in multi-chain geometry. The weight of the secondary Hubbard sub-bands is of fourth order so that the two-chain geometry is sufficient for our study. Even close to the Mott--Hubbard transition, our results for the Mott--Hubbard gap agree very well with those from numerical Dynamical Density-Matrix Renormalization Group (DDMRG) calculations. The density of states of the lower Hubbard band also agrees very well with DDMRG data, apart from a resonance contribution at the upper band edge which cannot be reproduced in low-order perturbation theory.Comment: 40 pages, 7 figure

    Application of the Density Matrix Renormalization Group in momentum space

    Full text link
    We investigate the application of the Density Matrix Renormalization Group (DMRG) to the Hubbard model in momentum-space. We treat the one-dimensional models with dispersion relations corresponding to nearest-neighbor hopping and 1/r1/r hopping and the two-dimensional model with isotropic nearest-neighbor hopping. By comparing with the exact solutions for both one-dimensional models and with exact diagonalization in two dimensions, we first investigate the convergence of the ground-state energy. We find variational convergence of the energy with the number of states kept for all models and parameter sets. In contrast to the real-space algorithm, the accuracy becomes rapidly worse with increasing interaction and is not significantly better at half filling. We compare the results for different dispersion relations at fixed interaction strength over bandwidth and find that extending the range of the hopping in one dimension has little effect, but that changing the dimensionality from one to two leads to lower accuracy at weak to moderate interaction strength. In the one-dimensional models at half-filling, we also investigate the behavior of the single-particle gap, the dispersion of spinon excitations, and the momentum distribution function. For the single-particle gap, we find that proper extrapolation in the number of states kept is important. For the spinon dispersion, we find that good agreement with the exact forms can be achieved at weak coupling if the large momentum-dependent finite-size effects are taken into account for nearest-neighbor hopping. For the momentum distribution, we compare with various weak-coupling and strong-coupling approximations and discuss the importance of finite-size effects as well as the accuracy of the DMRG.Comment: 15 pages, 11 eps figures, revtex

    Analytical and Numerical Treatment of the Mott--Hubbard Insulator in Infinite Dimensions

    Full text link
    We calculate the density of states in the half-filled Hubbard model on a Bethe lattice with infinite connectivity. Based on our analytical results to second order in t/Ut/U, we propose a new `Fixed-Energy Exact Diagonalization' scheme for the numerical study of the Dynamical Mean-Field Theory. Corroborated by results from the Random Dispersion Approximation, we find that the gap opens at Uc=4.43±0.05U_{\rm c}=4.43 \pm 0.05. Moreover, the density of states near the gap increases algebraically as a function of frequency with an exponent α=1/2\alpha=1/2 in the insulating phase. We critically examine other analytical and numerical approaches and specify their merits and limitations when applied to the Mott--Hubbard insulator.Comment: 22 pages, 16 figures; minor changes (one reference added, included comparison with Falicov-Kimball model

    Mott-Hubbard transition in infinite dimensions

    Full text link
    We calculate the zero-temperature gap and quasiparticle weight of the half-filled Hubbard model with a random dispersion relation. After extrapolation to the thermodynamic limit, we obtain reliable bounds on these quantities for the Hubbard model in infinite dimensions. Our data indicate that the Mott-Hubbard transition is continuous, i.e., that the quasiparticle weight becomes zero at the same critical interaction strength at which the gap opens.Comment: 4 pages, RevTeX, 5 figures included with epsfig Final version for PRL, includes L=14 dat

    Utilization of Polyspecific Antiserum for Specific Radioimmunoassays: Radioimmunoassays for Rat Fetuin and Bikunin Were Developed by Using Antiserum Against Total Rat Serum Proteins

    Get PDF
    Polyspecific antiserum against total rat serum proteins was used to develop specific and sensitive radioimmunoassays for fetuin and bikunin, two minor protein components of rat plasma. The radioimmunoassays proved to be highly useful to trace bikunin and fetuin in the course of developing isolation procedures, since neither specific functional assays nor monospecific antisera were available. The two examples demonstrate that, in general, it will be possible to develop a specific and sensitive radioimmunoassay with antiserum raised against a crude antigen preparation, such as a body fluid or a tissue extract, provided that a minute amount of pure antigen is available for preparing the radioiodinated antigen
    • …
    corecore